Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos publicos e/ou privados Natal/RN

GENERATING BREAKS IN A TRANSIT Bus CREW SCHEDULING PROBLEM

Juliette Medina
WPLEX Software Ltda.
ht t p: / / www. wpl ex. com br
Rod SC 401, 8600 Corporate Park bloco 5 sala 101
88050-000 Santo Antbnio de Lisboa, Florian6polis SC
juliette.medina@wplex.com.br

Sylvain Fournier
WPLEX Software Ltda.
http://ww. wpl ex. com br
Rod SC 401, 8600 Corporate Park bloco 5 sala 101
88050-000 Santo Antdnio de Lisboa, Florianopolis SC
sylvain@wplex.com.br

RESuUMO

Apresentamos neste artigo uma abordagem para a geracadtggosiintervalos de des-
canso em jornadas diarias de trabalho de motoristas desmibano, de forma a atender a
nova lei federal brasileira que regulamenta a jornada thaltna dos motoristas de veiculos
rodoviérios de carga e de passageiros. Para isso, usamdseunistica dedicada e gulosa
que parte de uma jornada composta por uma sequéncia devig@iém disso o descanso
pode ter duragcdo menor que o intervalo existente entrensag@ostramos, por fim, que o
algoritmo € rapido e capaz de gerar jornadas viaveis e gisien

PALAVRAS CHAVES . Programacgao de Descansos de Motorista, Programacé&o de Tri
pulacdo de Onibus, Heuristica Gulosa, Logistica e Transptes.
Logistica e Transportes - L&T

ABSTRACT

In this paper an approach for generating multiple breaksily ttansit bus crew workdays
Is presented, so as to comply with the new Brazilian fedexalthat rules the workdays for
goods and passengers transportation vehicle drivershisanatter we use a dedicated and
greedy heuristic which entry is a workday made of a sequeht@s. Moreover, a break
may have a shorter duration than the existing interval betvigps. Finally, we show that
this algorithm is fast and able to generate valid and efftaiarkdays.

KEYWORDS. Driver Break Scheduling, Transit Bus Crew Scheduling Prollem, Greedy
Heuristic, Logistics and Transportation.
Logistics and Transportation - L&T

1606

http://www.wplex.com.br
mailto:juliette.medina@wplex.com.br
http://www.wplex.com.br
mailto:sylvain@wplex.com.br

1. Introduction

For a transit bus company, scheduling the bus drivers’ waygds a difficult chal-
lenge. It is necessary to take lots of legal constraintsantmunt for each driver to be able
to work under adequate conditions. In particular, in a longation workday (typically
over 6 hours), it is necessary to include a lunch break sathieadiriver can rest and have
his meal. In Brazil, this break can be paid or not and may hawenstrained duration.
For example, some bus companies set up the double shift aptige for some of their
drivers, in which an unpaid break splits the workday into asts and which duration
should usually be over 3 hours.

The Brazilian government has just passed a new labour ruban12.619/20121
to ensure reasonable levels on drivers’ working conditiang to reduce traffic accidents.
According to the law, the one-hour meal break can now be isptitmany shorter breaks.
Additionally, a driver has to stop and take a 15-minute biigale has been driving for 4
hours without resting.

In section2 we briefly describe the context in which this paper takesela&ec-
tion 3 defines the break generation problem we face, and we proeidésiof our solving
heuristic in sectiod. Some real-life results are given in sect®and in sectioré we draw
some conclusions and perspectives for the work describtmilsipaper.

2. The Transit Bus Crew Scheduling Problem

The Transit Bus Crew Scheduling Problem is a widespread amghlex optimiza-
tion problem faced by transit bus companies. The more trigve ho be performed in the
company daily schedule, the more benefits are expected the oke of an automatic tool
to generate the drivers’ workdays.

WPLEX Software provides an application (WPLEX-ON) to helsltompanies to
schedule their day-to-day operation. In this piece of saftwthere are some automatic
tools, amongst which two of them produce a set of workday® firet one generates the
set of all workdays from scratch, given the set of trips thaatehto be performed and the
bus schedule for a day of operation. The second one improsesat existing workdays
by swapping several times pieces of work between two chosekdays. In the next two
sections, we decribe the way in which these algorithms delihe break generation we
deal with in this paper.

2.1. Solving the Crew Scheduling Problem from scratch

In the classical Transit Bus Crew Scheduling Problem (C&Pet of tasks (or
pieces of work), most of which are bus trips, must be perfarimg drivers, minimizing
the crew total cost. Because of the number of workday canstranposed by the law
and sometimes by the transit bus company and the difficidtitation of a single workday
cost, we formulate it as a widely used set partionning foatiah, as described dyournier
(2009.

Ihttp: //waw. pl anal t 0. gov. br/ccivil _03/ _At02011- 2014/ 2012/ Lei / L12619. ht m

Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos publicos e/ou privados Natal/RN

1607

http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Lei/L12619.htm

Simpésio Brasileiro de Pesquisa Operacional 16 a 19

A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos publicos e/ou privados Natal/RN

Let 7" be the set of tasks to perform. LEft) be the set of workdays covering task
t € T, and! be the set of all already generated workdays. Every binarghie x; denotes
a possible workday, and equals 1 if and only if workdag part of the solution, and is
this workday cost. The CSP can be formulated as follows:

min Z Ci* T (1)
il

> omi=1, WeT (2)
i€ I(t)

z; € {0,1} , Viel (3)

In our Branch-and-Price procedure, we generate evewariable from the set of
tasks (or pieces of work) that the resulting workday woulderpusing a dedicated sub-
problem. At each such generation, the algorithm needs &rméate:

e ifitis possible toschedule breaksn the workday idle time (time periods between
the tasks),

e if the resulting workday (with such breaks) would be valigasling the constraints
defined in sectiof,

e the cost of the resulting workday, if it is valid.

If the new workday is valid and satisfies the condition on dstadefined in the column
generation process, it is added to the variabld det further use in the algorithm.

2.2. Improving the crew using Local Search

WPLEX-ON also allows its user to generate a cheaper crew énordready manu-
ally set crew though a sequence of simple local search métesach step, two workdays
are chosen and in both workdays, a task set is selected foaja attempt with the other
workday. For each such attempt, the following steps areieghpl

1. swap a worday task set with the other workday task setS$ipte,
2. redefine the breaksfor both workdays,

3. determine if the new workdays are valid,

4. compute the cost of both resulting workdays.

A First-improvement strategy is applied: if the two new workdays are overall pleedhan
the former ones, the move is performed and the algorithm fpresrd to the next step.
Otherwise, another swapping move is tested (with other sask or workdays) until no
more improving move is found.

3. Generating breaks in a Transit Bus Crew Scheduling Problm

Meal break scheduling has often been tackled as a subprall&mft Scheduling
(such as irRekik et al.(2010 andMusliu et al.(2009) where each operator has a defined
workday time window and breaks must be inserted to cut time tivindow into several
working parts. One of the constraints is the staff requinetsi@er period: a minimum
number of employees must be present at any time. In the CraedBtng Problem, some
authors (such a€hen et al(2013) restrict the breaks to a given time period (lunch and

1608

Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos publicos e/ou privados Natal/RN

dinner time). Our case is similar but here the idle time betweach couple of tasks defines
several possible time windows where can be defined severakbr These time windows
are different for every workday, as every workday has its eetrof tasks to be performed.

Each driver’'s workday is composed of several pieces of wdrlclwvcan be made
of trips, deadheads or other events such as bus preparatianspection at the beginning
of the workday. We define each piece of waty its time periodS;, E;]. Therefore, each
possible break interval is given by = [E;, S; 1] wherei € [1,n — 1].

Let’'s consider an example with a workday made of 9 pieces ok\{see figurel).
In our example, the first piece of work is defined by time pefi®d £;] = [0, 20].

Figure 1. Workday pieces of work

20 30 32 25 10 33 30 19 40
- <= -— = =<<-> o> < = - > <= - >
p— P— P— P— e P— [- [-

[0 20] [25 55] [80 112][115140] [175185]192 225] [261 291] [311 330] [339 379]

The breaks intervals are given by (see figye
[1 : [El == 207 52 == 25] ,[2 : [EQ == 55753 == 80] ,[3 : [Eg == 112,54 == 115] g eee

Figure 2. Possible break intervals

205 30 55 32 325 35 10, 33 55 30 55 19 o 40

— = — g P < — — PpPp———-g— — — o P—g P> p———d

[0 20] [25 55] [80 112][115 140] [175185[192 225] [261 291] [311 330[339 379
11 12 13 4 15 16 7 18

In addition to these: — 1 inter-task intervals, a break interva|, called “post-
workday” break interval, may be defined at the end of the wayk@fter then-th piece
of work), in case it is impossible to define a valid workdayngsmerely the inter-task
intervals. However this should be avoided as it doesn’'t nsakese to consider a break as a
resting period at the end of the workday. That is why this kis@ntroduced in the breaks
set only if there is no other solution and has an upper bdgnd on its end time.

For thei-th such break intervall(, : € [1,n]), we denote:

e 1, a binary variable usch that:

(4)

B 1 if a break is defined inside the interval,
¥ 71 0 otherwise.

e the related break defined by its start and end ddbes: (o, 5;] C I; = [E;, Sit1]-

If an interval I; is not chosen to contain a break, by convention we set the-corr
sponding break’s start time and end time to 0 (see consE&@ntConstraint §) states that
any break must be included in the corresponding interval:

Vi € [1, n], if z; =0 thenOéi = 61 =0 (5)
Vi € [1,” — 1], if r;, =1 thenEi <o < 51' < Si—i—l (6)

Note that in usual Crew Scheduling Problems, it is not cjestdted that the breaks
may be shorter than the whole interval between pieces of \fmdaning thatB; = 1)

1609

XLVSBPO

Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
servicos publicos e/ou privados Natal/RN

although in real-life schedules, drivers may be idle for edime before and after their
breaks. This is nonetheless an important feature in oud@modefinition.

Without loss of generality, we consider that the workdaytstat time 0 and ends

atE, + (8, — a,), which is the end time of the last piece of work or of the postkday
break, if any.w is the total workday duration for which the driver is paidisltmportant to
notice thatw < E,, in the case of unpaid breaks (as will be underlined in coimgt(&3)).

N’ is the set of indices for the chosen break intervals= {i € [1,n]|z; = 1}. In

addition, we introduce the following indices:

3.1.

e first = min N’ the first interval containing a break in the solution,
e last = max N’ the last interval containing a break,

e it = min;.,; N’ the interval inN" just afteri € N’,

Constraints

o [andu g5, lower and upper bounds on the duration of the first resultiegep

of work in the driver’s workday:

Lpirst < Otfipst < Ufipst (7)
l1.s: @nduy,s; lower and upper bounds on the duration of the last resultiegepof
work. In case a post-workday break is necessary to genesatidavorkday, this
constraint doesn’t hold:

liast < By — Blast < Ugast (8)
Linter @Ndu;,se, lOwer and upper bounds on the durations of each intermerhate
sulting piece of work:

Vi e [17 n—]-]7 if T =1 thenlinter < o+ — 61 < Uinter (9)
bmin MiNimum break duration:
biotar FE€QUIred total duration for the break set:
Z (ﬁz - ai) - btotal (11)
i=1
Post-workday break start time and end time (if any):
En S ap < 571 S min(Pmax; En + btotal) (12)

Wynin @aNdw,,.. MiNimum and maximum workday durations:
E, + (B, — ay) if the breaks are paid,

min < < max Wlth - & . 13
{min = 10 =10 v E, =) (8 — a;) otherwise. (13)
=1
Nmae the maximum number of breaks.

i % S Nmaz (14)
i=1

Note that ifn,,,, = 0, the problem is trivial and if.,,,,, = 1, constraint) doesn'’t

hold. In our example, the constants values are defined ie fabVloreover, we suppose
the breaks are unpaid. An example of valid break set is gindigare 3.

1610

SBPO

Simpésio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiéncia nos

16 a 19

Setembro de 2013
Natal/RN

servicos publicos e/ou privados
Table 1. Symbol definitions and values in the example
Symbol Definition Value
[Ss, Fi] [start,end] time for piece of work
1; break interval between pieces of warkndi: + 1
n total number of possible break intervals 9
Nomaa maximum number of breaks 5
(Lirst, Usirst]) | [lOwer,upper] bound on the first piece of work duration [30,60]
(lasts Wiast] [lower,upper] bound on the last piece of work duration [30,70]
[Linter, Winter] | [lOwer,upper] bound for each intermediate piece of wprkl2,120]
Winin/Wmaz | MiNimum / maximum workday duration 289/480
binin/ Oin minimum break duration before / after preprocessing 5/5
biotar V)1 | tOtal break duration before / after preprocessing 300/90
Pz maximum post-workday end time (if any) 390
x; binary variable indicating if interval; is in the solution
B; break associated with interval
[, Bi [start,end] time for brealB;
w total workday duration
Qfirst first break start time
Biast last break end time
N’ set of chosen break intervals
Figure 3. Example of valid break set
__ _oo___ 1o 7.3 314 _30_ 5919 4_40

[0 20] [25 55]

B2

[80 112][115 140] [175185[192 225]

BS5

[261 291]

B7

3.2. Objectives

[311 3301339

B8

379]

The main goal is to generate a break set satisfying the @ntsrthat have just
been described. However some secundary objectives carfibedlen order to make the
driver's workday easier to be performed.

e Minimize the “post-workday” break duration (if any):

min (ﬁn - an)

(15)

e Minimize the number of breaks: it is better for the driverhitwve few long breaks
than several short breaks:

n
min E T;
i=1

e Maximize the duration of the longest break:

)

ieEN’

(16)

(17)

1611

SBPO

Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
servicos publicos e/ou privados Natal/RN

4. Dedicated multi-stage heuristic

To solve our problem, we use a dedicated heuristic to gemératks because we

need a fast algorithm which would work as an additional stegpcomplex Crew Schedul-
ing Problem. Our heuristic is greedy and returns a breakf setd only if it results in a
valid driver’s workday. The general procedure is describezigorithm1.

Algorithm 1: Generate the workday breaks

if UnpaidBreakshen

\ UpdateBreakConstraints()

end

GenerateValidintervalSet()see al gorithm 2

if NOT IsValidintervalSethen
CreatePostWorkdayBreak()
GenerateValidintervalSet()see al gorithm 2
ReducePostWorkdayBreakDuration()

end

10 RemoveUnnecessaryintervals()

1 SetUpBreakDurations()

0 N o g A~ W N P

©

Algorithm 2 : Generate valid interval set

1 forall 4 € [1,n — 1] do

2 Ti < 1

3 | oy E;

4 Bi < Sit1

5 end

e RemoveTooShortintervals()

7 FindFirstPossibleinterval@ee al gorithm 3
s FindLastPossibleinterval()

9 RemovelntervalUntilValidBreakSet()

4.1.

Preprocessing step

In a preprocessing step, we update the break time constifaime breaks are un-

paid, using the total working time constraints: indeed, in tlase; the total workday dura-
tion has to take into account the total break duration, agqusly stated in constrainig).

If the total break duration is too long, the minimum workdanstraint defined by,,;,,
(left-hand side of constrainig)) can be violated.

Similarly, b+ is updated using the fact that a too long total break duratam

result in a too short workday. Applying the preprocessindaip to our example (recall
that the breaks are unpaid):

/
bmin

= max {bmin; Fn — Wnae } = max {5;379 — 480} =5

1612

Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos publicos e/ou privados Natal/RN

bin 1S UNModified because the workday duratiomwas already valid.
otar = TN { btotar; B — Wiin b = min {300; 379 — 289} = 90

In this case, thé;. is updated because if the total break duration is over®@Will
be shorter thanu,,;,. This new value foi,,, is now the longest duration for which
constraint {3) onw,,;, is satisfied.

4.2. Defining the first and last break interval candidates

Algorithm 3: Find The First Possible Break
11041
2 FirstBreakFound— FALSE
3 While NOT FirstBreakFound OR i # n — 1 do

a | if Sipy — max{E;; lpiee} > U, then
5 a; < max{E;; lpirst}

6 Bi <= Sit1

7 FirstBreakFound— TRUE

s | else

9 ‘ z; < 0

10 end

11 1+ 1+1

12 end

In algorithm 3 we determine the earliest starting date for the first breathad
constraint 7) is not violated, as well as the first break interval candidat/e apply the
same kind of procedure for constraiB) flealing with the last break interval.

In our example, wheréy;,,, = 30 anduy;,, = 60, I; can't be in the solution
becausdr; = 25 < l;,» = 30. As a consequence, the first break interval candidatg is
(see figured) and the value for, may be up t®0 = w5, therefore it is the only possible
first interval (meaning necessarity = 1).

Figure 4. After eliminating the impossible first break inter val I

60 35 10, 33 30

19
- — = 25 . 1 . > Sl 36 o 77 =202 977 >
. w— —P aPd<— E—OPe———d < — g -

o |p 55] |5 [80 140] [175185[192 225] [261 291] [311 330[339 379]

4.3. Generating a valid break interval set

At this point, we still have to consider the lower and uppeurds on each inter-
mediate piece of work (constraintd)), and constraintsld) on the maximum number of
breaks. Here constraint) is relaxed and replaced with a lower bound on the total break
time:

n

Z (ﬁl - ai) Z b;otal (18)

i=1

1613

A Pesquisa Operacional na busca de eficiéncia nos Setembro de

Constraint £1) will only be considered again at the last stage of our atbori(see further
section4.5). We define an interval set aslid if it satisfies all the constraints defined in
section3.1considering this last constrairit) instead of constraintl().

We try to discard every interval, starting with the shortests, until the interval set
becomes valid. In our example, our interval set is not val@hstraint 9) with /;,,;., = 12
is not fulfilled beetween breaks intervdlsand/s: (E5 — S5) = 10 < linzer-

We start removing the shortest break interval whickyiOur set is now valid (see
figureb): (Es — S5) = 43 > lner SOI, andlg can be consecutive intervalst(= 6). Note
that it may still have been possible to include break [182] i®the solution. However our
algorithm considers it is unnecessary regarding all thetramts.

Figure 5. A valid break interval set

__® o5 __ 60 35 50 g5 _ 30 5519 9 40

——— w— —— aPa— PP A P G P—-i— -

[0 55] [80 140] [175 225] [261 291] [311 330[339 379
4 15

4.4. Removing unnecessary break intervals

We try to remove unnecessary breaks intervals starting tfmnshortest to the
longest (in our examplés, I, I, 14, Ig) in order to keep the longest intervals as far as
possible, until the interval set is no longer valid. In ouaeple:

e It is impossible to removés and setrgs = 0 as constraintg) on v;,,; = 60 would

not be fulfilled any more{Ey — Ss) = (379 — 311) = 68 > wyqst-

e On the other hand]; can be discarded without violating any constraint (see fig-
ureo6).

e As was already stated in sectidr®, I, must be kept in the solution.

e [, and/; also can't be removed because of constra@t®(w;, ., = 120.

Figure 6. After removing the unnecessary break intervals

__® o5 __ 60 35 _ 50 55 _ 69 _o9_40_

— < PP —Peg—P——d—— P SP———=

[0 55] [80 140] [175 225 [261 330]339 379
12 14 6 17 18

4.5. Determining breaks inside the chosen intervals

At this point, the interval set is minimal, which means thatinterval can be re-
moved without violating at least one constraint. We now rteeéconsider constraini)
and set values fat; and 3;, Vi € N’. Every break duration is reduced, starting with the
shortest ones. In our example, the total break timgiss N', 7 = > (8; — a;) = 105.
Here, the total duration that has to be removed from the Bresgk..,,, = 7" — b},,,;, = 15
(see figurey).

e We first reduce the duration of bredk: it can be shrunk to 5 minutes.
e B, can be reduced as well: it will last 14 minutes (see the finaitem given on
figure7).

Simpésio Brasileiro de Pesquisa Operacional 16 a 19

2013

SBPO servicos publicos e/ou privados Natal/RN

1614

Simpésio Brasileiro de Pesquisa Operacional 16 a 19

A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos publicos e/ou privados Natal/RN

5. Computational results

In this section we aim to show two behaviours. First, our atgm should be able
to run very fast as it must be applied every time a new workdaenerated from any set
of pieces of work: it must be determined if it is possible tolude breaks to make the
workday valid. Second, it should give a cheaper solutiom tagimilar algorithm where
the breaks are restricted to the whole intervals betweearepief work.

For that matter, we run the whole Crew Scheduling algorithat includes the
break generation for real-life instances and tablkghows the results we obtained. Our
algorithm is written in Java 1.6 and for these tests we usethth Core2 Quad CPU
Q8400 processor in a 8 GB memory PC.

Table 2. Running instances of the Transit Bus Crew Schedulin g Problem

Instance| # Pieces # Workdays| Cost (hh:)mm:ss # Steps # Break calls
Cs1 2570 349 35458 02:46:52| 250 32.10°
CS2 2570 354 36014 03:49:49| 515 58.10°
LS3 2570 343 35458 03:08:24| 90 138489
CS4 104 28 15085 00:01 2 916
CS5 104 45 22494 00:01 2 1002
LS6 104 26 14478 00:02 9 822
LS7 206 44 4600 00:17 181 2578
LS8 598 41 4847 00:22 175 8382

LS 206 43 4473 00:07 8 1301
CS12 206 43 4509 06:17 758 3467045
CS9 598 184 17931 07:14 174 2657004
CS9-1 598 183 17996 06:44 222 952702
CS10 206 181 17934 00:17 69 19365

CS10-I 206 182 18048 00:02 4 729
CSs11 598 44 4645 40:52 519 17106388

CS11-1 598 41 4741 26:04 739 8169161

The first column is the instance identifier. All the instanegh the “CS” prefix are
regular Crew Scheduling instances (see se@iy whereas instances with the “LS” prefix
have been run under a local search approach, where a setkdaysralready exists and
is improved by simple local search moves (see se@i@n In both cases, the algorithm
has to validate each time it generates a new workday: it tagssert breaks using the
algorithm described in this paper and if such breaks ardemnlesuccessfully, the workday
is kept for further steps of the global algorithm. All the tzasces are real-life customer
schedules. Note for example that CS1 and CS2 is the sam@&gdestan using different
optimization parameters.

Figure 7. Final solution

_ .5 a1t 35 _ 50 3 3 _5_40_

A — A< — — A< — — > P —

[0 55] 80 140] [175 225] 261 291] [311 330][339 379
B2 B8

1615

Simpésio Brasileiro de Pesquisa Operacional 16 a 19

SBPO servicos publicos e/ou privados Natal/RN

The second column shows how many pieces of work there aregltva the given
instance. From the third column on, the information is alsmiting the Crew Scheduling
model:

e the number of workdays in the final solution (third column),

e the final solution cost in Brazilian R$ (fourth column),

e the total processing time in (hours,) minutes and secortts ¢blumn),

e the number of steps of the Crew Scheduling algorithm, whichasically every
time it reaches a new solution, possibly fractionary (scdahumn),

¢ the number of calls of the Break Scheduling algorithm dégctin this paper (sev-
enth column).

Note that from columns 2 and 3, the average number of piece®f per driver
can be calculated for each instance to get an insight of teeage size of each break
generation problem that has to be solved.

It can first be noticed that the break generation algorithoalked a huge number
of times, usually over 3000 times per second, which was dggdedlote that it can give us
an upper bound on the average processing time of our breadagem, as solving Crew
Scheduling implies a lot of other procedures. It confirms thet break generation is really
fast and succeeds in running a lot of times without givingaliad impact on the overall
processing time.

Furthermore, on the three last line groups in téhleve compare an instance €S
with the same instance @S that is solved using a simple break generator where every
break is the whole interval between the pieces of work. Inctmee of our algorithm, the
solution cost obtained is lower. In some cases (such as G88heuristic resulted in more
workdays in the final solution than without using the heigisin fact, what matters is
the total cost, as the other heuristic may create workdatfs mwore extra time (which is
more expensive than using more workdays without extra titdeje also that the number
of times breaks are generated is higher when our heuristippied. This can be simply
explained by the fact that fewer workdays are valid in theepthore constrained case and
more pieces of work combinations to build up a workday areatided in a preprocessing
step.

6. Conclusion and perspectives

In this paper, we describe a very fast break generation ighgorincluded in a
complex Crew Scheduling model. This algorithm is adapted tew law that has just
passed in Brazil and states that bus drivers’ breaks may liargp several parts. We
showed that it is an improvement to allow the breaks to betbtincluded in the interval
between the driver’s pieces of work, despite the idle tineretates, because this leads to
much more possible valid workdays. With our customers’ gurétions, this algorithm is
sufficient to generate satisfying breaks.

However, as it is greedy and focuses on returning few breaksy circunstances
our algorithm can generate bad solutions or can even faihtbdne (removing a key in-
terval prematurely). One example of sub-optimal behavieould be a case containing
three break intervals with the one in between just a littlerdr than the other ones. Our
algorithm would then discard the interval in the middle aitgh it may lead to a solution

A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013

1616

Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos publicos e/ou privados Natal/RN

where both other break intervals are needed to satisfy thielgm constraints, whereas
the discarded interval alone would have been sufficient.eMbeless, in usual customer
instances, this particular kind of input hasn’t yet beennfibu This drawback could be
partly solved using a post-processing local search praegdumprove the solution, such
asBeer et al.(2008. There could also be a kind of backtrack, especially in thsedhe
algorithm fails. As it is mainly a constraint-based modeg would even study a solu-
tion using a constraint satisfaction approach suctal (2009 or Curtis et al.(1999 in
similar problems.

References

Beer, A., Gartner, J., Musliu, N., Schafhauser, W. and SlanyW. (2008). Scheduling
breaks in shift plans for call centers. Rroceedings of PATAT 2008 - The 7th Inter-
national Conference on the Practice and Theory of Automated Timetabling. Montreal
(Canada)12

Chen, S., Shen, Y., Su, X. and Chen, H2013). A crew scheduling with chinese meal
break rulesJournal of Transportation Systems Engineering and Infor mation Technology
13,90-95.3

Curtis, S. D., Smith, B. M. and Wren, A. (1999). Forming bus driver schedules using
constraint programming. In BlackPool, edihe Pratical Application Company, volume
239.12

Fournier, S. (2009). Branch-and-price algorithm for a real-life busicseheduling prob-
lem. In L. Buriol, M. Ritt and A. Benavides, ed€£RPOSul 2009 Anais. Porto Alegre
(RS, Brazil).2

Musliu, N., Schafhauser, W. and Widl, M. (2009). A memetic algorithm for a break
scheduling problem. Ifhe 8th Metaheuristic International Conference (MIC 2009).
Hamburg (Germany)3

Rekik, M., Cordeau, J.-F. and Soumis, F(2010). Implicit shift scheduling with multiple
breaks and work stretch duration restrictiodsurnal of Scheduling 13, 49—-75.3

Wolf, A. (2009). Constraint-based task scheduling with sequengendkent setup times,
time windows and break$l Jahrestagung 2009 , 3205-321912

1617

	Introduction
	The Transit Bus Crew Scheduling Problem
	Solving the Crew Scheduling Problem from scratch
	Improving the crew using Local Search

	Generating breaks in a Transit Bus Crew Scheduling Problem
	Constraints
	Objectives

	Dedicated multi-stage heuristic
	Preprocessing step
	Defining the first and last break interval candidates
	Generating a valid break interval set
	Removing unnecessary break intervals
	Determining breaks inside the chosen intervals

	Computational results
	Conclusion and perspectives

